ASSITIVE TECHNOLOGY KEYRING

You can order free CTD AT keyrings for training, peer support, parent workshops, personnel prep classes and other activities in which you’d like to share these handy, colorful examples of assistive technology. Examples range from low- to high-tech and span ages and types of support. We have also provided print copies of the pages that you can easily print and cut on your own.
<table>
<thead>
<tr>
<th>Fidget Toys</th>
<th>Flexible Seating</th>
<th>Visual Supports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laundry Basket Tub</td>
<td>Weighted/Compression Vests</td>
<td>Screen Magnifiers</td>
</tr>
<tr>
<td>Mobile & Tablet Tech</td>
<td>3D Printed Pencil Grips</td>
<td></td>
</tr>
</tbody>
</table>

Center on Technology and Disability - Assistive Technology Keyring
Assistive Technology Keyring

Fidget Toys

Fidgets, such as this Tangle, help children control their bodies and focus by giving their hands something to do. Fidgets and other sensory supports are AT items that should be considered by IFSP and IEP teams. A child's age, size, motor, and behavioral challenges should be considered when selecting these and other AT supports. Giving their hands something to do by keeping their bodies occupied and focus on AT items, such as this Tangle, helps children learn and participate in activities.

Laundry Basket Tub

Each tuck of AT into a laundry basket can be easily cut or modified to add supports that are not represented in IFSP and IEP documents. A wide range of low-tech to high-tech visual supports are available at www.ctdinstitute.org and early childhood classrooms. Youth with visual impairments benefit from tactile and braille materials. Weighted and compression vests are commonly used AT in early intervention. Visual supports are among the most accessible: Visual supports are among the most accessible.

Mobile & Tablet Tech

Mobile and tablet technology tools help even the youngest of children with disabilities communicate and learn. From simple cause-and-effect apps to sophisticated communication programs, mobile technology has expanded the use of AT in all domains. The best AT apps are based on research and are customizable for individual needs.

Flexible Seating

Flexible seating allows children to move and incorporate wiggles in their movements and schedule. Calories, focused, and ready to participate, children learn to control the amount of pressure needed to help them stay in their seats. Some children learn self-regulation through strategies such as posture and positioning, weight of the chair, and furniture. Weighted and compression vests may be used to help children learn to self-regulate. Some are designed for specific conditions, and others are designed for general use. Weighted and compression vests are commonly used AT in early intervention. Visual supports are among the most accessible.

3D Printed Pencil Grips

The introduction of the 3D printer has opened new doors for those with disabilities, including wiggles in their movements and schedule. 3D printed pencil grips are among the most accessible: Visual supports are among the most accessible.
Pointing/Typing Aids
Ergonomic Keyboards
Speech-to-Text
Text-to-Speech
Closed Captioning
Voice Command Devices
Screen Readers
Assistive Technology Keyring

<table>
<thead>
<tr>
<th>Pointing/Typing Aids</th>
<th>Ergonomic Keyboards</th>
<th>Telepresence Robot</th>
<th>Text-to-Speech</th>
<th>Speech-to-Text</th>
<th>Trackpads</th>
<th>Closed Captioning</th>
<th>Voice Command Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>A pointing/typing aid is typically a wand or stick that helps a user make selections on a digital screen and mimics hand and finger movements. It can be worn on the head, held in the mouth, or hand, and strapped to the chin, arm, or wrist.</td>
<td>Ergonomic keyboards provide physical support of hands and wrists for easier computer use. They should be selected based on individual needs and preferences.</td>
<td>Telepresence robots allow children with health conditions, anxiety, or anything that prevents them from going to school, the opportunity to participate in class, remotely, and virtually. The child controls the movements of the robot, with the robot's avatar creating a relaxed position, reducing the chance of joint pain.</td>
<td>If a student has trouble reading and/or understanding written text, they can use text-to-speech software to have it read aloud. It is an accessibility feature on most mobile devices and can be freely added to most operating systems or Web browsers.</td>
<td>Students who have difficulty writing text can use a speech-to-text program to dictate text. When using this tool, students will need to proofread carefully, as the programs do not always translate spoken words correctly.</td>
<td>A trackpad is an effective alternative to the computer mouse for people with low motor skills. It requires minimal clicking and allows hands and wrists to remain in a relaxed position, reducing the chance of joint pain.</td>
<td>Teachers often use video to present content in class. If you watch a video in your classroom, turn on the captions!</td>
<td>Voice command devices eliminate the need for keyboarding and typing of voice commands, eliminating the text-to-speech software that reads text aloud.</td>
</tr>
</tbody>
</table>

Screen Readers

Screen readers assist those who are blind or have low vision by interpreting text displayed on a digital screen and converting it to speech.

Closed Captioning

Closed captioning can help a wide range of students, especially those with hearing impairments, read and understand the content of videos.

Text-to-Speech

If a student has trouble reading and/or understanding written text, they can use text-to-speech software to have it read aloud. It is an accessibility feature on most mobile devices and can be freely added to most operating systems or Web browsers.

Speech-to-Text

Students who have difficulty writing text can use a speech-to-text program to dictate text. When using this tool, students will need to proofread carefully, as the programs do not always translate spoken words correctly.

Trackpads

A trackpad is an effective alternative to the computer mouse for people with low motor skills. It requires minimal clicking and allows hands and wrists to remain in a relaxed position, reducing the chance of joint pain.

Closed Captioning

Closed captioning can help a wide range of students, especially those with hearing impairments, read and understand the content of videos.

Text-to-Speech

If a student has trouble reading and/or understanding written text, they can use text-to-speech software to have it read aloud. It is an accessibility feature on most mobile devices and can be freely added to most operating systems or Web browsers.

Speech-to-Text

Students who have difficulty writing text can use a speech-to-text program to dictate text. When using this tool, students will need to proofread carefully, as the programs do not always translate spoken words correctly.

Trackpads

A trackpad is an effective alternative to the computer mouse for people with low motor skills. It requires minimal clicking and allows hands and wrists to remain in a relaxed position, reducing the chance of joint pain.
Center on Technology and Disability - Assistive Technology Keyring

- Braille Notetakers
- Digital Notetakers
- Graphic Organizers
- Word Prediction & Completion
- Calculation Checkers
- Grammar Checkers
- Smart Watches
- Virtual Reality (VR)
- Digital Avatars
<table>
<thead>
<tr>
<th>Smart Watches</th>
<th>Digital Avatars</th>
<th>VR (Virtual Reality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Are different from their peers. Make students with disabilities feel they are no different, and provide instantaneous feedback.</td>
<td>Pointing/typing aids are typically a wand or stick that helps a user make selections or type on a touch screen or press keys on a keyboard. It might be worn on the head, held in the mouth or hand, and strapped to the chin, arm or wrist.</td>
<td>VR devices allow youth with disabilities to experience a virtual environment that might include inaccessible activities such as virtual baseball, gymnastics, and skateboarding.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Digital Note-takers</th>
<th>Grammar Checkers</th>
<th>Word Prediction & Completion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provide instant feedback.</td>
<td>Grammar checkers identify mistakes in syntax, helping students catch, correct, and learn from their errors.</td>
<td>Word prediction and completion programs help students with spelling, learning or fine motor difficulties compose text with fewer keystrokes needed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculation Checkers</th>
<th>VR (Virtual Reality)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decrease errors and save time. Increase step-by-step analysis of the problem. Some calculation checkers provide a step-by-step analysis of the problem so students can review mathematical problems to detect and then learn from their mistakes.</td>
<td>VR devices can also help students plan accessible routes, practice social skills, and experience a variety of otherwise inaccessible activities such as virtual baseball, gymnastics, and skateboarding.</td>
</tr>
</tbody>
</table>